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Abstract—Low-rank matrix approximation is a standard, yet
powerful, embedding technique that can be used to tackle a
broad range of problems, including the recovery of missing
data. In this paper, we focus on the performance of nonnegative
matrix factorization (NMF) with minimum-volume (MinVol)
regularization on the task of nonnegative data imputation. The
particular choice of the MinVol regularization is justified by
its interesting identifiability property and by its link with the
nuclear norm. We show experimentally that MinVol NMF is a
relevant model for nonnegative data recovery, especially when
the recovery of a unique embedding is desired. Additionally,
we introduce a new version of MinVol NMF that exhibits some
promising results.

Index Terms—matrix completion, nonnegative matrix factor-
ization, minimum-volume

I. INTRODUCTION

Given a data matrix X ∈ Rm×n, there exist many sce-
narios where only a few entries of X are observed, e.g.,
in recommender systems illustrated by the famous Netflix
problem [1]. Recovering these missing entries is often tackled
by assuming that the fully observed data follow a certain
structure. If the structuring assumption is meaningful, by
fitting a model that follows the same structure on the observed
entries, it is possible to recover the missing entries; see,
e.g., [2]–[4]. The low-rank assumption is meaningful in many
scenarios [5]. If X ∈ Rm×n is low rank, we can express
it as the product of two smaller matrices, W ∈ Rm×r and
H ∈ Rr×n, as X = WH where r ≪ min(m,n). Let us
denote Ω ⊆ {1, . . . ,m} × {1, . . . , n} the set containing the
indices of the observed entries in X . If the rank of X is
equal to r, we can look for W ∈ Rm×r and H ∈ Rr×n such
that X(i, j) = W (i, :)H(:, j) for all (i, j) ∈ Ω. Then, for
every missing entry at (i, j) ∈ Ω, X(i, j) can be estimated
by computing W (i, :)H(:, j). If X is noisy and does not
follow the low-rank assumption, it might still be relevant to
approximate it through a low-rank structure, because low-rank
matrix approximations can identify patterns in the data via the
extraction of common features among data points.

When the rank is unknown, a common tractable strategy is
to minimize the nuclear norm, that is the sum of the singular
values, of the estimation X̃ of X:

min
X̃

∥X̃∥∗ such that PΩ(X̃) = PΩ(X),

This work was supported by the Fonds de la Recherche Scientifique - FNRS
(F.R.S.-FNRS) under PDR no T.0097.22 and under a FRIA Ph.D. grant for
OVT, and by the European Union (ERC consolidator, eLinoR, no 101085607).

where PΩ(Y ) sets Y (i, j) to zero if (i, j) /∈ Ω, or does not
change it otherwise.

In this paper, we consider the rank to be known, and our
goal is not only to recover the missing entries in X , but also to
recover the unique matrices W and H that generated the data
X = WH . This could be useful in hyperspectral unmixing
with missing data for instance, where the columns of W
are expected to be the spectral signatures of the underlying
materials, and where the j-th column of H contains the
abundance in the j-th pixel of each extracted material. In
this scenario, it is of course preferable to recover a unique
set (W,H). To perform this task, it is possible to first use a
data completion algorithm, and then use a constrained matrix
factorization algorithm to estimate the sought factors W and
H . Here, we focus on performing both tasks together, since
estimating correctly W and H on Ω implies a correct recovery
of the missing entries in X = WH . We assume that the data
and the factors are nonnegative, that is, X ≥ 0, W ≥ 0 and
H ≥ 0, where ≥ is applied element wise. In the fully observed
case, estimating nonnegative W and H from X is known as
nonnegative matrix factorization (NMF) [6]. Hence, our goal is
to perform NMF with missing data while recovering a unique
decomposition. To do so, minimum-volume (MinVol) NMF is
a relevant option, and its performances on matrix completion
have never been explored before. In this paper, we show that
when correctly tuned, MinVol NMF performs well on the
matrix completion task and is also able to retrieve the true
underlying factors using only a few observed entries.

The paper is organized as follows. In Section II, we intro-
duce MinVol NMF and its identifiability properties. In Sec-
tion III, we introduce the nonnegative matrix completion
problem and discuss on the relevance of MinVol NMF for
this problem. We also introduce a new variant of MinVol
NMF. In Section IV, we describe the algorithms used in the
experiment presented in Section V. Finally, we conclude and
discuss future work in Section VI.

II. MINIMUM-VOLUME NMF (MINVOL NMF)

A. Existing declinations of MinVol NMF

Given a matrix X ∈ Rm×n
+ and a factorization rank r, in the

exact case NMF consists in finding two smaller matrices W ∈
Rm×r

+ and H ∈ Rr×n
+ such that X = WH . Geometrically,

this implies that cone(X) ⊆ cone(W )1. Distinctively, with
MinVol NMF the cone of W should enclose the cone of X as

1Given A ∈ Rm×n, cone(A) = {y | y = Ax for x ∈ Rn
+}.



tightly as possible, hence the expression “minimum-volume”.
In other words, MinVol NMF consists in finding a couple of
factors (W,H) ∈ Rm×r

+ × Rr×n
+ such that X = WH while

minimizing the volume of the convex hull of the columns
of W and the origin, which is given by 1

r!

√
det(W⊤W ).

This improves the interpretability of the features (the columns
of W ) while prioritizing a unique decomposition of the data
under relatively mild assumptions, that are given in Theorem 1.
Additionally, one of the factors should be constrained such
that the scaling ambiguity between W and H coupled with the
minimized volume does not make W tend to zero at optimality.
Identifiable MinVol NMFs typically use simplex structuring
constraints, namely W ∈ ∆m×r [7] or H ∈ ∆r×n [8] or
H⊤ ∈ ∆n×r [9], where ∆m×r = {Y ∈ Rm×r

+ , e⊤Y = e⊤}
and e is the all-one vector of appropriate dimension. Among
the three mentioned variants of MinVol, we will only consider
the following formulation in the remainder of this paper:

min
W,H

1

2
∥X −WH∥2F +

λ

2
logdet(W⊤W + δI)

s.t. W ∈ ∆m×r, H ∈ Rr×n
+ ,

(1)

where δ is a parameter that prevents the logdet from going
to −∞ when W is rank deficient, and λ ≥ 0 balances
the two terms. Note that the true volume spanned by the
columns of W and the origin is equal to 1

r!

√
det(W⊤W ),

but minimizing logdet(W⊤W ) is equivalent in the exact case
and makes the problem numerically easier to solve because
the function logdet(·) is concave and it is easier to design a
“nice” majorizer for it [10].

B. Identifiability of MinVol NMF

We say that (W,H) is an exact MinVol NMF of size r of
X if it solves

min
W∈∆m×r,H∈Rr×n

+

logdet(W⊤W ) such that X = WH.

Definition 1 (Essential uniqueness of MinVol NMF). The
exact MinVol NMF (W,H) of X = WH of size r is unique
if, and only if, for any other exact MinVol NMF (W̃ , H̃) of
X = W̃ H̃ of size r, there exists a scaled permutation matrix
Q such that W̃ = WQ−1 and H̃ = QH .

Essential uniqueness is also referred as “identifiability”.
MinVol NMF with column wise simplex structured H has
first been proved to be identifiable in [8], under the so called
sufficiently scattered conditions (SSC).

Definition 2 (SSC). The matrix H ∈ Rr×n
+ is sufficiently

scattered if the following two conditions are satisfied:

[SSC1] C = {x ∈ Rr
+ | e⊤x ≥

√
r − 1∥x∥2} ⊆ cone(H).

[SSC2] There does not exist any orthogonal matrix Q such
that cone(H) ⊆ cone(Q), except for permutation matrices.

These conditions require
that the aperture of
cone(H) is “large enough”
by making sure cone(H)
contains the second-
order cone C which is
tangent to every facet of the
nonnegative orthant (SSC1),
and not to tightly (SSC2).
Geometrical interpretations
of SSC1 is provided
in Fig. 1 and Fig. 2, where
∆r = {y ∈ Rr

+, e
⊤y = 1}.

C∆3

e1

e2

e3

Fig. 1: Visualization of C
with r = 3. ei’s are the
canonical vectors.

SSC1 SSC1bd(∆3)
Columns of H
scaled on ∆3

cone(H) ∩∆3

C ∩∆3

Fig. 2: Geometrical interpretation of SSC1 with r = 3.

Under the SSC, we have the following identifiability theo-
rem.

Theorem 1 ([7]). If W ∈ Rm×r is full column rank and
H ∈ Rr×n satisfies the SSC, then the exact MinVol NMF of
size r of X = WH is essentially unique.

Theorem 1 is fulfilled under relatively mild conditions, as
the requirements are almost only on the factor H . The only
assumption on W is that it should be full rank.

III. NONNEGATIVE MATRIX COMPLETION (NMC)

In this section, we justify the choice of the minimum-
volume criterion for the task of nonnegative matrix comple-
tion. Matrix completion in general has been well studied,
especially by the compressed sensing community. Among
the techniques to perform matrix completion, the low-rank
approach often arises, because the low-rank structure has been
observed to be quite powerful in this setting, as it is able to
identify hidden (linear) features in data. However, minimizing
the rank of the estimation matrix while guaranteeing the
equality constraints on the set of observed entries is NP-hard
in general. A good convex relaxation that promotes low-rank
structures is the nuclear norm minimization; see [11]. This
is coming from the fact that the rank is the ℓ0 norm of the
vector of the singular values, while the nuclear norm is the
ℓ1 norm of this vector. Still, this requires to store the whole
estimation X̃ of X , and it also becomes harder to impose
additional structuring constraints. When the rank is known,
we can fully exploit the low-rank structure by working with
the low-rank factors W and H instead. It is then easier to add



some structuring constraints on W and H . Also, this allows
one to deal with larger problems. Since

∥X∥∗ = min
X=WH

1

2

(
∥W∥2F + ∥H∥2F

)
,

a good alternative to the nuclear norm regularization is then the
regularizer 1

2

(
∥W∥2F + ∥H∥2F

)
[12]. If the rank is unknown,

an overestimated rank coupled with a proper penalization
of 1

2

(
∥W∥2F + ∥H∥2F

)
can yield state-of-the-art results. For

example, in [13], a properly tuned matrix factorization model
using the above regularizer can outperform deep neural net-
works on recommendation systems. In [14], they showed that
the sightly different regularizer ∥W∥∗ + 1

2∥H∥2F yields better
results than 1

2

(
∥W∥2F + ∥H∥2F

)
, both with uniform or non-

uniform samplings. Going back to our point of interest, it
is interesting to observe that the MinVol regularizer provides
more adaptability as a (non-convex) relaxation of the rank [15],
since logdet(W⊤W + δI) =

∑
i log(σ

2
i (W ) + δ). As it can

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1
ℓ1

f10−1(x)

f10−3(x)

f10−6(x)

f10−9(x)
ℓ0

Fig. 3: Function fδ(x) =
ln(x2+δ)−ln(δ)
ln(1+δ)−ln(δ) for various values of

δ, along the ℓ0 and ℓ1 norm.

be seen in Fig. 3, logdet(W⊤W + δI) approximates a range
of behaviors between the ℓ0 and the ℓ1 norms. In particular, as
δ goes to zero, logdet(W⊤W + δI) converges to the ℓ0 norm
of the vector of singular values of X , up to a constant factor.
Hence the MinVol criterion logdet(W⊤W + δI) is clearly a
good candidate as a regularizer for NMC.

Let us now propose two models to tackle NMC. The first
one is to adapt (1) to the NMC problem, which yields

min
W,H

1

2
∥PΩ(X −WH)∥2F +

λ

2
logdet(W⊤W + δI)

s.t. W ∈ ∆m×r, H ∈ Rr×n
+ .

(2)

Theorem 1 does not extend to the case where some values
are missing. If the matrix completion is not unique, then it is
impossible to guarantee a unique recovery of the matrices W
and H . Hence, a trivial way to adapt Theorem 1 to missing
values is to add the condition that matrix completion under
MinVol should be unique. However, conditions under which
solving (2) recovers a unique completion are, up to now,
unknown.

The second one introduces a new variant of MinVol NMF
which is not simplex structured. Inspired by the regularizer
∥W∥∗ + 1

2∥H∥2F and motivated by the link between the

behavior of the nuclear norm and the MinVol criterion, here
we consider logdet(W⊤W + δI) + ∥H∥2F as a regularizer.
The resulting new MinVol NMF adapted for NMC is

min
W,H

1

2
∥PΩ(X−WH)∥2F +

λ

2
logdet(W⊤W+δI) +

γ

2
∥H∥2F

s.t. W ∈ Rm×r
+ , H ∈ Rr×n

+ . (3)

where λ ≥ 0 and γ ≥ 0 balance the regularizers. Note
that neither W nor H is simplex structured. The scaling
ambiguity coupled with the volume penalization is counter
balanced by the penalization of ∥H∥2F . In fact, in the exact
case and when δ = 0, every row of H has the same norm at
optimality. Consider a feasible (W,H) for (3) such that X =
WH and let f(D) = λ

2 logdet(D−1W⊤WD−1) + γ
2 ∥DH∥2F

where D = Diag(d1, . . . , dr) is a positive diagonal matrix
that can be seen as the scaling ambiguity between W and H .
Nullifying the gradient of f relatively to each di, we have that
d2i = λ

γ∥H(i,:)∥2
F

, meaning that at optimality ∥H(i, :)∥2F = λ
γ

for all i.

IV. ALGORITHMS

In Section V, we compare NMF, MinVol (2) and new
MinVol (3). For a fair comparison, these models are fit with
the same algorithmic scheme, adapted from [16], which is
an extrapolated alternating block majorization-minimization
method. Our adaptation is described in Algorithm 1, where
P∆m×r (respectively PRm×r

+
) projects a matrix of size m× r

onto ∆m×r (respectively Rm×r
+ ). See [17] for the details

on the projection onto ∆m×r. Essentially, the updates for
W and H are several projected gradient descent steps, per-
formed with a step size equal to the inverse of the Lips-
chitz constant. The updates for each model and each factor,
as well as the corresponding Lipschitz constant, are given
in Table I and Table II. The used Lipschitz constants are
deliberately not tight. Consider the MinVol NMF update
of H for instance. Let M ∈ {0, 1}m×n be such that
M(i, j) = 1 if (i, j) ∈ Ω, M(i, j) = 0 otherwise. A
tighter Lipschitz constant is maxj

∥∥W⊤((M(:, j)e⊤) ◦W )
∥∥
2
.

We deliberately keep ∥W⊤W∥2 as it is less costly to com-
pute and the additional cost might not be worth it. More-
over, if at least one column of X is fully observed, then
maxj

∥∥W⊤((M(:, j)e⊤) ◦W )
∥∥
2
= ∥W⊤W∥2 = ∥W∥22.

V. EXPERIMENTS

The goal of this section is to highlight the performance
of the MinVol criterion for NMC. All experiments are run
with Julia on a PC with an Intel(R) Core(TM) i7-9750H CPU
@ 2.60GHz and 16GB RAM. All displayed measurements
are averaged out of 20 runs. The code is available at https:
//gitlab.com/vuthanho/minvol-nmc. The compared models are
NMF (to provide a baseline of a non-regularized model),
MinVol (2), and the new proposed MinVol (3). For all models,
the stopping criteria of the while loop in line 2 is just a number
of outer iterations equal to 50, and the stopping criteria of the
two while loops in lines 3 and 8 is a number of inner iterations
equal to 20. All models are also initialized with the same

https://gitlab.com/vuthanho/minvol-nmc
https://gitlab.com/vuthanho/minvol-nmc


Algorithm 1: Main algorithm scheme
input: data matrix X ∈ Rm×n, initial factors

W ∈ Rm×r
+ and H ∈ Rr×n

+

1 α1 = α2 = 1, Wo = W, Ho = H
2 while stopping criteria not satisfied do
3 while stopping criteria not satisfied do
4 α0 = α1, α1 = 1

2 (1 +
√
1 + 4α2

0)
5 W = W + α0−1

α1
(W −Wo)

6 Wo = W
7 Update W according to Table I

8 while stopping criteria not satisfied do
9 α0 = α2, α2 = 1

2 (1 +
√
1 + 4α2

0)
10 H = H + α0−1

α2
(H −Ho)

11 Ho = H
12 Update H according to Table II

Update

MinVol P∆m×r

(
W − 1

L
∇W

)
new MinVol / NMF (with λ = 0) PRm×r

+

(
W − 1

L
∇W

)
TABLE I: Updates for W according to the model, where
P = (W⊤W + δI)−1, L = ∥HH⊤ + λP∥2 and
∇W = PΩ

(
WH −X

)
H⊤ + λWP .

L Update

MinVol / NMF ∥W⊤W∥2 PRr×n
+

(
H − 1

L
∇H

)

new MinVol ∥W⊤W + γI∥2 PRr×n
+

(
L−γ
L

H − 1
L
∇H

)
TABLE II: Updates for H according to the model, where
∇H = W⊤PΩ

(
WH −X

)
.

warm start (W0, H0), which is the output of 500 iterations
of NMF where the columns of W are simplex-structured. In
this setting, all methods converge. For both MinVols, λ is
first set to max(∥PΩ(X−W0H0)∥2

F ,10−6)

| logdet(W⊤
0 W0+δI)| . For the new proposed

MinVol, γ is first set to 0.01
max(∥PΩ(X−W0H0)∥2

F ,10−6)

∥H0∥2
F

. On
the hyperparameters λ and γ, we adapt the automatic tuning
method developed in [18]. The automatic tuning does not
introduce a significant additional cost and is triggered when
the difference between the current and the last objective values
divided by ∥PΩ(X)∥2F is less than 10−3.

a) First experiment: noiseless synthetic data: The first
experiment focuses on both data completion and recovery
of the exact generating factors in a noiseless case. For this
experiment, for a given rank r, we randomly generate two
factors (W,H) = [0, 1]200×r× [0, 1]r×200 following a uniform
distribution. Then, 80% random values of H are set to zeros.
This is a reasonable assumption in real scenarios such as

hyperspectral unmixing. For the explored range of ranks, this
will provide almost surely a sufficiently scattered H . Then, we
generate the full data matrix X simply by computing WH .
The average of the elements of X is always set to 1, dividing
X by its average. Finally, we create the observed data X̃
by removing a certain percentage of the entries in X . We
vary the rank from 5 to 10, and the percentage of missing
values from 80% to 90%. We report the root-mean-squared
error (RMSE) of the missing values according to Def. 3 and
the maximum subspace angle between the factor W that took
part in generating the data X and its estimation W̃ according
to Def. 4.

Definition 3 (RMSE). The RMSE on the unobserved set Ω is
defined as follows

RMSE(X̃,WH) =

√
1

|Ω|
∥PΩ(X̃ −WH)∥2F .

Definition 4 (Subspace angle). Let USV and Ũ S̃Ṽ respec-
tively be the singular value decomposition of W and W̃ . Then
the angle between the two subspaces specified by the columns
of W and W̃ is defined as follows

Angle(W, W̃ ) = arcsin(min(1, ∥Ũ − UU⊤Ũ∥2)).

The RMSEs are reported in Fig. 4 and the subspace angles
in Fig. 5. MinVol NMF coupled with the proposed auto-
tuning proposed in [18] clearly outperforms the vanilla MinVol
NMF with a fixed λ. The auto-tuned MinVol NMF is itself
outperformed by our new proposed variant of MinVol NMF.
For 90% missing values and a rank equal to 10 for instance,
the average RMSE of the auto-tuned Minvol is 0.52 while it
is 0.41 for the new MinVol.

b) Second experiment: noisy synthetic data: We keep the
same settings as in the first experiment, while fixing the rank
to 10, and adding some uniformly distributed noise. The noise
level corresponds to the RMSE between the clean data and
the noisy data. We vary the noise level from 0 to 1 and the
percentage of missing values from 80% to 90%. We report
the RMSE in Fig. 6. It is not necessary to report the subspace
angle since it is degrading too fast. Perfect matrix completion
is a necessary condition to retrieve a low subspace angle,
which is already not possible starting from a noise level equal
to 0.2. Results in Fig. 6 show that our proposed variant of
MinVol NMF is more consistent relatively to the percentage
of missing values and more precise than vanilla MinVol NMF
in the presence of noise.

VI. CONCLUSION AND DISCUSSION

This paper argued on the favor of using more the MinVol
criterion in the domain of matrix completion, which has never
been explored before. Not only the MinVol criterion can emu-
late a broad of behaviors going from the rank minimization to
the nuclear minimization, but it also acts in favor of recovering
the unique decomposition of a low-rank matrix if it exists. This
paper also introduced a new variant of MinVol NMF which
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Fig. 4: Average RMSE according to the rank r and to the percentage of missing values over 20 runs.
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Fig. 6: Average RMSE according to the noise level and to the percentage of missing values over 20 runs.

is not simplex-structured. Experiments show that a properly
tuned MinVol NMF provides encouraging results, both on the
task of matrix completion and unique factors recovery. Last but
not least, experiments show that our new proposed variant of
MinVol NMF outperforms vanilla MinVol NMF. Future work
will focus on the potential identifiability of this new variant
and on comparing with other matrix completion algorithms.
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